Artificial

User-Centric Conversational Recommendation with Multi-Aspect User Modeling

Shuokai Li^{1,2,*}, Ruobing Xie^{3,*}, Yongchun Zhu^{1,2}, Xiang Ao^{1,2,†}, Fuzhen Zhuang^{4,5}, Qing He^{1,2,§}

¹Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China. ²University of Chinese Academy of Sciences, Beijing 100049, China.

³WeChat Search Application Department, Tencent, China. ⁴Institute of Artificial Intelligence, Beihang University, Beijing 100191, China. ⁵SKLSDE, School of Computer Science, Beihang University, Beijing 100191, China. {lishuokai18z, zhuyongchun18s, aoxiang, heqing}@ict.ac.cn, ruobingxie@tencent.com, zhuangfuzhen@buaa.edu.cn

--- SIGIR 2022

2022. 8. 25 • ChongQing

Reported by Sijin Liu

- 1.Introduction
- 2.Method
- 3. Experiments

Introduction

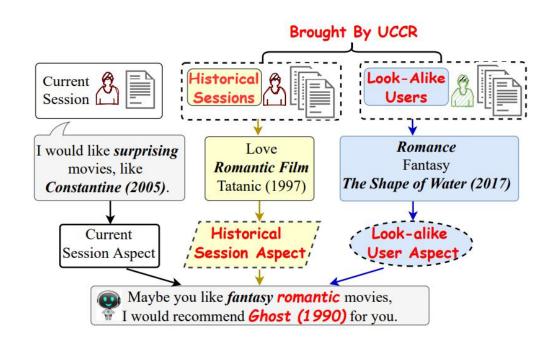


Figure 1: An example of the multi-aspect user information. UCCR introduces the historical dialogue sessions and lookalike users to CRS for user-centric preference learning.

Most of methods pay too much attention to the current dialogue session and only learn the preferences reflected by the session, ignoring the central subjects in CRS, i.e., users.

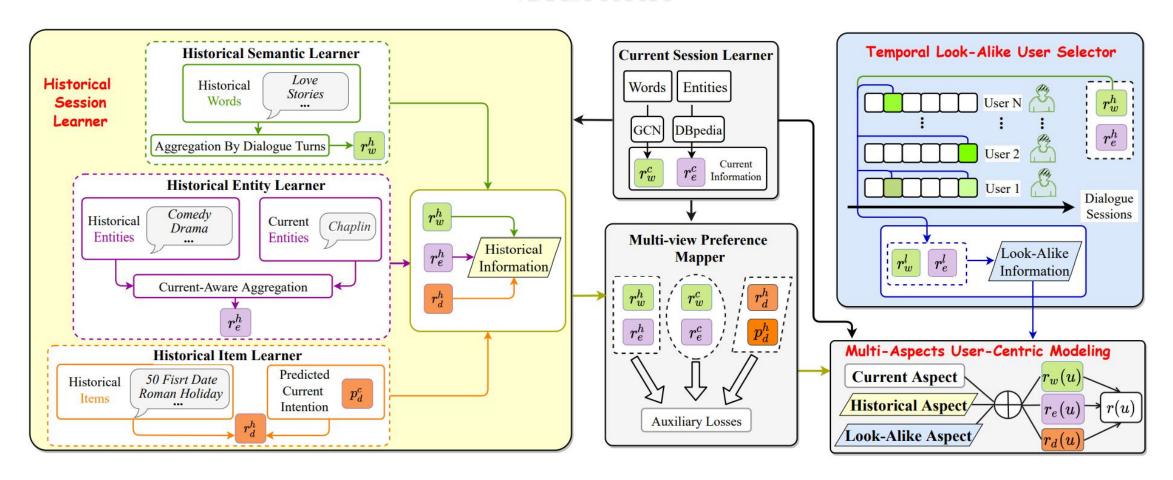
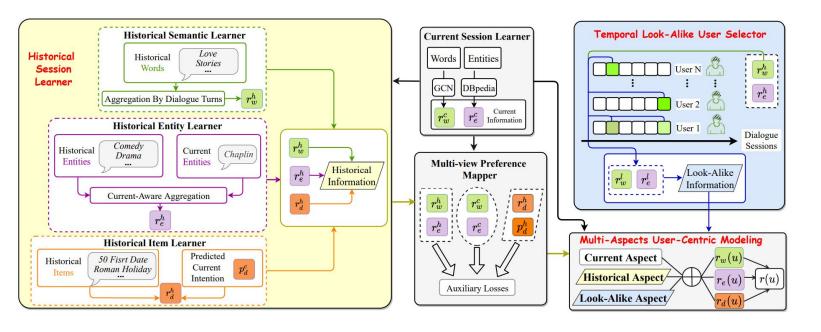


Figure 2: The overview of our model UCCR. First, the multiple views information is encoded by the historical and current session learners. Second, the multi-view preference mapper further explores the correlations between views. Next, the temporal lookalike users selector provides another aspect feature. Finally, these aspects are fused by the user-centric modeling module.

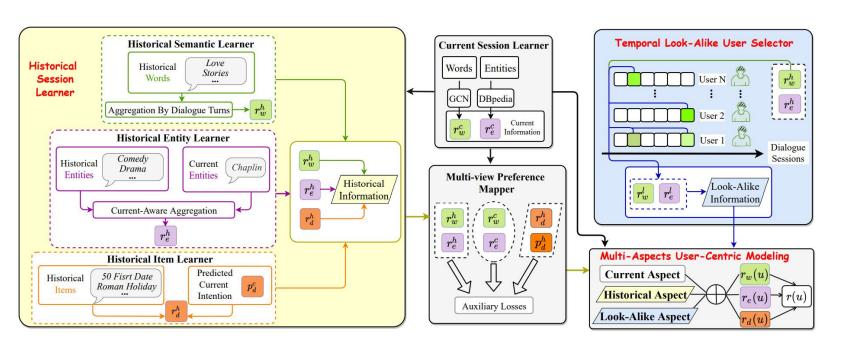


Notions of our UCCR. In real-world CRS, a user may have multiple dialogue sessions with the system. We organize user dialogue sessions in chronological order. For a user u from \mathcal{U} having T dialogue sessions, we have the following definitions:

Definition 1: Current Dialogue Session. We regard the T-th session as the current dialogue session that we should recommend for. In the current (dialogue) session, when recommending items at a certain turn, all t user mentioned entities $C_e = \{e_1^T, ..., e_t^T\}$ of the current session before this turn are viewed as the *current entities*. For words, the definition of *current words* C_w is the same as C_e .

Definition 2: Historical Dialogue Sessions. We call all previous sessions before the current session as historical dialogue sessions. It also includes the *historical entities* $\mathcal{H}_e = \{\mathcal{H}_e^1, \cdots, \mathcal{H}_e^{T-1}\}$ and *historical words* \mathcal{H}_w extracted from all T-1 sessions. Besides, the previous recommended items in historical sessions are viewed as *historical preferred items* \mathcal{H}_d . Precisely, $\mathcal{H}_e^j = \{e_1^j, ... e_{t_j}^j\}$ includes all t_j user mentioned entities of the j-th historical dialogue session, and similar as \mathcal{H}_w and \mathcal{H}_d . We should double clarify that our proposed historical dialogue session is completely different from the dialog/conversation history used in [2, 18, 39], for their "historical" information locates in the historical sentences (turns) of the current dialogue session. To the best of our knowledge, we are the first to highlight the significance of historical dialogue sessions in generative CRS.

Definition 3 (Look-alike Users). The look-alike users refer to similar users. The user similarity can be calculated from multiple perspectives, such as user profiles and historical behaviors. In UCCR, we rely on the historical words, entities, and items for look-alike users learning. In light of user-CF, the look-alike users may have similar tastes, thus could enhance the user representations, which is especially effective when users only have sparse information learned from the current or historical dialogue sessions.



$$\mathcal{H}_d^j = \{d_1^j, ... d_t^j\}$$

 $\mathbf{h}_d^j = \text{R-GCN}(\mathcal{H}_d^j)$

Current Session Learner

$$C_e = \{e_1^T, ..., e_t^T\}$$

$$v_e^{l+1} = \sigma(\sum_{r \in \mathcal{R}} \sum_{e' \in \mathcal{N}_e^r} \frac{1}{Z_{e,r}} W_r^l v_{e'}^l + W^l v_e^l), \tag{1}$$

$$r_e^c = \text{R-GCN}(C_e) = \mathcal{F}(\mu_e(V_e)^{\text{T}}),$$

 $\mu_e = \text{Softmax}(b_e \text{Tanh}(W_e V_e)),$
(2)

$$C_w = \{w_1^T, ..., w_t^T\}$$

$$r_w^c = GCN(C_w)$$

Historical Session Learner

$$r_e^h = \text{Agg}(r_e^c, h_e^1, ..., h_e^{T-1}) = \sum_{j=1}^{T-1} \varphi(h_e^j, r_e^c) h_e^j,$$
 (3)

$$\varphi(\boldsymbol{h}_e^j, \boldsymbol{r}_e^c) = \operatorname{Softmax}(\boldsymbol{h}_e^j W_s \boldsymbol{r}_e^c / \lambda_e),$$

$$\boldsymbol{h}_{w}^{j} = \mathcal{F}(\sum_{m=1}^{t} s(w_{m}^{j}) \, \boldsymbol{v}_{w_{m}^{j}}), \tag{4}$$

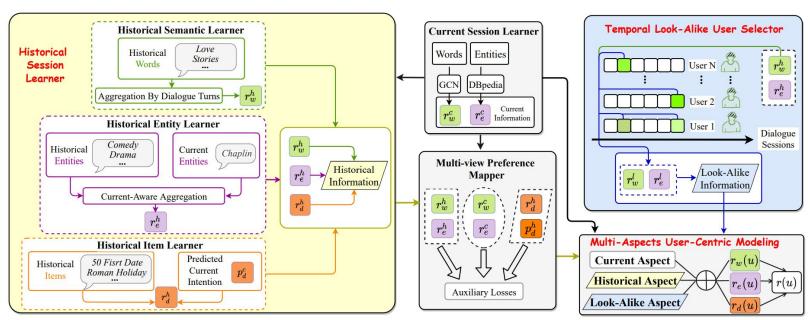
$$s(w_m^j) = \text{Softmax}(1, 2, ..., t)[m]$$

$$\boldsymbol{r}_{w}^{h} = \sum_{j=1}^{\bar{T}-1} s(\boldsymbol{h}_{w}^{j}) \, \boldsymbol{h}_{w}^{j}$$

$$\boldsymbol{p}_{d}^{c} = g(\boldsymbol{r}_{w}^{c}, \boldsymbol{r}_{e}^{c}) = \tau \cdot \boldsymbol{r}_{w}^{c} + (1 - \tau) \cdot \boldsymbol{r}_{e}^{c},$$

$$\tau = \sigma(W_{g} \operatorname{Concat}(\boldsymbol{r}_{w}^{c}, \boldsymbol{r}_{e}^{c})),$$
(5)

$$\boldsymbol{r}_d^h = \text{Agg}(\boldsymbol{p}_d^c, \boldsymbol{h}_d^1, ..., \boldsymbol{h}_d^{T-1})$$



 $r_e(u)$ $r_d(u)$

where $\delta(x) = \max(0, x - \delta_w)$ is a clip function to avoid too much noise, and δ_w is the threshold. $r_w^l(u, u')$ is viewed as the contribution of u' on user u's current word modeling, and $r_w^l(u, u')$ equals 0 when $\sin(r_w^h(u), r_w^h(u'_k))$ is smaller than δ_w for all time points. For the entity view, the formalization of $r_e^l(u, u')$ is the same as Eq. (7). $l_w(u, u')$ and $l_e(u, u')$ will be used as look-alike user supplements for u.

Multi-View Preference Mapper

$$\mathcal{L}_a(v_1, v_2) = \sum_{u \in \mathcal{B}} (1 - \sin(v_1^u, v_2^u))^2 + \lambda_a \sum_{u, u' \in \mathcal{B}} (\sin(v_1^u, v_2^{u'}))^2,$$

Specifically, we have three alignment tasks: (1) $v_1 = r_w^c$, $v_2 = r_e^c$; (2) $v_1 = r_w^h$, $v_2 = r_e^h$; (3) $v_1 = r_d^h$, $v_2 = p_d^h$, p_d^h is the combination of historical words and entities (refers to Eq. (5)).

Temporal Look-Alike User Selector

$$r_{w}^{l}(u, u') = \sum_{k=1}^{K} \delta(\sin(r_{w}^{h}(u), r_{w}^{h}(u'_{k}))) r_{w}^{c}(u'_{k}), \tag{7}$$

Multi-Aspect User-Centric Modeling

$$\mathbf{r}_{e}(u) = \mathbf{r}_{e}^{c}(u) + \alpha_{h}\mathbf{r}_{e}^{h}(u) + \alpha_{s} \sum_{u' \in \mathcal{U}} \mathbf{r}_{e}^{l}(u, u'), \tag{8}$$

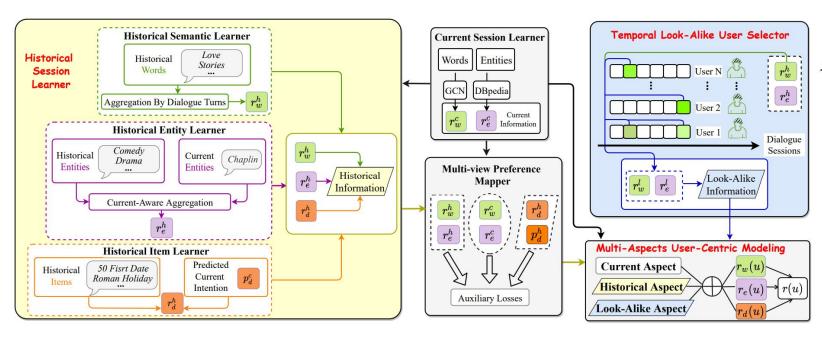
$$\alpha_h = \mathcal{G}(\operatorname{Concat}(r_e^c(u), r_e^h(u))) / \tau_e, \tag{9}$$

$$r_w(u) = r_w^c(u) + \beta_h r_w^h(u) + \beta_s \sum_{u' \in \mathcal{U}} r_w^l(u, u'),$$
 (10)

$$r_d(u) = \gamma_h r_d^h(u), \tag{11}$$

$$\gamma_h = \delta(\sin(\boldsymbol{p}_d^h, \boldsymbol{p}_d^c)),$$

$$r(u) = g(r_w(u), r_e(u)) + r_d(u),$$
 (12)



Optimization

$$p_{rec}(u, d_i) = \text{Softmax}(r(u)^{\top} \cdot d_i),$$
 (13)

$$\mathcal{L}_{rec} = -\sum_{u \in \mathcal{U}} \sum_{i=1}^{N_u} \log \boldsymbol{p}_{rec}(u, d_i) + \lambda_{CL} \sum_{(v_1, v_2)} \mathcal{L}_a(v_1, v_2), \quad (14)$$

$$\boldsymbol{p}_{dial}(y_t|y_1,...,y_{t-1}) = \operatorname{Softmax}(W^G \boldsymbol{q} + \mathcal{M}(\boldsymbol{r}(u))[y_t], \quad (15)$$

$$\mathcal{L}_{dial} = -\sum_{u \in \mathcal{U}} \sum_{t=2}^{N_t} \log(\boldsymbol{p}_{dial}(y_t|y_1, ..., y_{t-1})). \tag{16}$$

Table 1: The recommendation results. The marker * indicates that the improvement is statistically significant compared with the best baseline (t-test with p-value < 0.05).

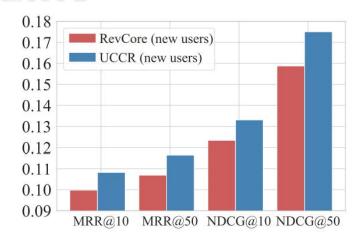
Dataset			TG-ReD:	ial		:	ReDial						
Method	HR@10	HR@50	MRR@10	MRR@50	NDCG@10	NDCG@50	HR@10	HR@50	MRR@10	MRR@50	NDCG@10	NDCG@50	
SASRec	0.0048	0.0170	0.0011	0.0016	0.0019	0.0046	0.0418	0.1598	0.0385	0.0407	0.0473	0.0712	
Text CNN	0.0052	0.0188	0.0015	0.0022	0.0029	0.0058	0.0733	0.1810	0.0438	0.0482	0.0576	0.0808	
Bert	0.0098	0.0356	0.0027	0.0040	0.0051	0.0101	0.1499	0.2937	0.0683	0.0761	0.0813	0.1167	
ReDial	0.0102	0.0370	0.0028	0.0041	0.0053	0.0107	0.1733	0.3359	0.0779	0.0841	0.0969	0.1351	
KBRD	0.0141	0.0481	0.0045	0.0063	0.0072	0.0143	0.1827	0.3688	0.0784	0.0855	0.1004	0.1428	
TG-ReDial	0.0168	0.0513	0.0061	0.0080	0.0088	0.0161	0.1893	0.3801	0.0801	0.0883	0.1032	0.1477	
KGSF	0.0175	0.0543	0.0073	0.0088	0.0096	0.0175	0.2006	0.4034	0.0837	0.0932	0.1110	0.1556	
KECRS	0.0113	0.0394	0.0033	0.0042	0.0057	0.0111	0.1772	0.3423	0.0780	0.0851	0.0983	0.1391	
RevCore	0.0191	0.0581	0.0077	0.0093	0.0105	0.0189	0.2058	0.4088	0.0850	0.0946	0.1132	0.1583	
UCCR w/o En	0.0167	0.0506	0.0071	0.0085	0.0092	0.0165	0.1976	0.3885	0.0812	0.0908	0.1084	0.1502	
UCCR w/o Wo	0.0207	0.0592	0.0080	0.0095	0.0114	0.0196	0.2106	0.4196	0.0865	0.0959	0.1168	0.1613	
UCCR w/o It	0.0211	0.0626	0.0082	0.0098	0.0116	0.0201	0.2146	0.4193	0.0865	0.0966	0.1173	0.1619	
UCCR	0.0232*	0.0664*	0.0088*	0.0107*	0.0122*	0.0214*	0.2161*	0.4258*	0.0883*	0.0981*	0.1182*	0.1642*	

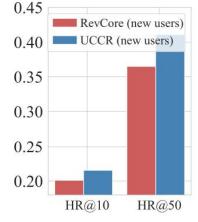
Table 2: Results on dialogue generation. Flu. and Inf. stand for Fluency and Informativeness, respectively. The marker * indicates that the improvement is statistically significant compared with the best baseline (t-test with p-value< 0.05).

Dataset	TG-ReDial								ReDial							
Method	Bleu-2	Bleu-3	Dist-2	Dist-3	Dist-4	PPL	Flu.	Inf.	Bleu-2	Bleu-3	Dist-2	Dist-3	Dist-4	PPL	Flu.	Inf.
ReDial	0.0409	0.0102	0.2672	0.5288	0.8012	55.71	0.71	0.75	0.0217	0.0078	0.0689	0.2697	0.4638	56.21	0.73	0.91
KBRD	0.0423	0.0119	0.3482	0.6911	0.9972	53.08	0.83	0.88	0.0238	0.0088	0.0712	0.2883	0.4893	54.89	0.82	1.00
KGSF	0.0461	0.0135	0.4447	1.0450	1.5792	51.27	1.01	1.09	0.0249	0.0091	0.0756	0.3024	0.5177	54.75	0.95	1.14
KECRS	0.0332	0.0078	0.1893	0.3799	0.6531	58.97	0.63	0.64	0.0133	0.0051	0.0473	0.1532	0.3188	59.35	0.59	0.71
RevCore	0.0467	0.0136	0.4513	1.0932	1.6631	51.03	1.06	1.11	0.0252	0.0098	0.0769	0.3065	0.5283	54.43	0.98	1.15
UCCR w/o En	0.0465	0.0138	0.4349	1.0289	1.5543	51.33	1.02	1.08	0.0245	0.0089	0.0729	0.3001	0.5082	54.95	0.96	1.12
UCCR w/o Wo	0.0478	0.0141	0.5093	1.2239	1.8583	50.68	1.07	1.14	0.0253	0.0097	0.0801	0.3195	0.5493	54.01	1.00	1.18
UCCR w/o It	0.0481	0.0142	0.5217	1.2589	1.9122	50.34	1.08	1.16	0.0255	0.0103	0.0815	0.3255	0.5561	53.56	1.03	1.18
UCCR	0.0494*	0.0145*	0.5365*	1.2783 *	1.9376 *	50.21 *	1.13*	1.18*	0.0257*	0.0106*	0.0818*	0.3289*	0.5635*	53.24 *	1.06 *	1.22*

Table 3: Results of cold-start scenarios on ReDial with different number of user's current entities.

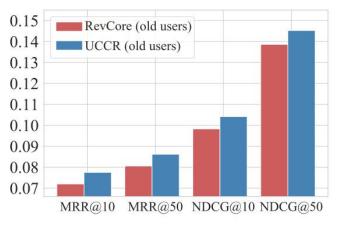
#Entity	Method	H@10	H@50	M@10	M@50	N@10	N@50
0	RevCore	10.23	26.31	0.0317	0.0409	0.0483	0.0799
	UCCR	11.61	28.36	0.0384	0.0471	0.0574	0.0906
1	RevCore	23.88	41.76	0.1094	0.1186	0.1377	0.1764
	UCCR	24.69	43.93	0.1153	0.1231	0.1409	0.1830
2	RevCore	22.65	41.92	0.0939	0.1045	0.1271	0.1693
	UCCR	23.44	42.12	0.0996	0.1084	0.1313	0.1725
3	RevCore	23.15	44.69	0.0859	0.0967	0.1202	0.1684
	UCCR	23.41	44.95	0.0886	0.0987	0.1214	0.1703
≥ 6	RevCore	18.63	40.77	0.0789	0.0898	0.1048	0.1562
	UCCR	19.28	41.64	0.0829	0.0942	0.1116	0.1617



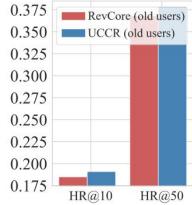


(a) MRR&NDCG results for new users.

(b) HR results for new users.



(c) MRR&NDCG results for old users.

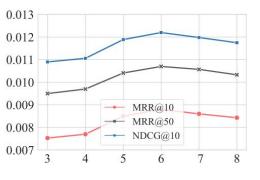


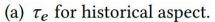
(d) HR results for old users.

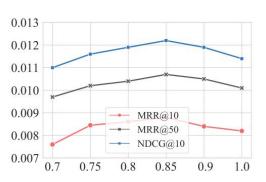
Figure 3: The results for cold-start historical sessions scenario.

Table 4: Ablation study for three aspects.

	H@10	H@50	M@10	M@50	N@10	N@50
UCCR w/o En	1.67	5.06	0.0071	0.0085	0.0092	0.0165
+ Current	1.95	6.12	0.0076	0.0093	0.0103	0.0192
+ Historical	2.14	6.33	0.0082	0.0101	0.0114	0.0204
+ Look-alike	2.32	6.64	0.0088	0.0107	0.0122	0.0214







(b) δ_e for look-alike aspect.

Figure 4: Hyper-parameters sensitive analysis for historical entities and look-alike users on TG-Redial.